Skip to content

Recent Articles

3
Apr

Do You Ever Dream of Candy Coated Raindrops?


“My love, do you ever dream of
Candy coated raindrops?
You’re the same, my candy rain”

Soul for Real
Tweet from @937RhythmFM

Do you ever dream of candy coated raindrops? No? Well, me neither. However, when I think of dreams it always reminds me of that Soul for Real song from the 90’s, “Candy Rain.” I used to love that group. I loved them so much I named my online persona after them. For the longest time, I was soul4real on everything social media account available. I’ve cut back over the years, but my Twitter handle is still @soul4real. As a result, every time someone wants to share that they are listening to a song from this group, they always tweet it like the one to the right. I get a few tweets a week like this.

So I wrote all of that because for some strange reason I can’t think of anything I dream of. I’m sure that has everything to do with me being on sabbatical. Maybe I should dream of having another sabbatical, but I’d have to wait 7 years for that and I hope to be retired by then. And when I return in the fall, I’ll already be going through a bit of a job change, transitioning back to teaching composition full time. It’s been four years, so I don’t have the barely hidden disdain for grading hundreds of essays every 3 weeks in me. I’m actually looking forward to it. Hopefully that feeling will last a few semesters. I guess I could dream that my students will be the best students to ever take a freshman comp class at GCC, and we all enjoy every minute of our time together. A girl can dream, right?

In the mean time, while I get back to enjoying my sabbatical and trying to think of things to dream of, you should enjoy the soulful stylings of a great group – Soul for Real singing “Candy Rain.”

28
Mar

Pain & Suffering or Just Assessment & Evaluation?

That’s how many instructors and students feel about assessment and evaluation. It’s a lot of needless pain and suffering. It always seems so punitive to students who struggle. But assessment doesn’t have to be that way. Many instructors have found ways to teach and use assessments in a way that encourage students to do better the next time. The key is that there is a next time, and that can be the challenge.

In writing courses, instructors can get overloaded with grading. The more a student writes the better that writing becomes, but who has time to grade all that writing. Apparently writing instructors do. However, there are ways to break down the concepts and skills needed to write well and have students practice those concepts and skills without the need of instructor grading. For instance, much of the bad writing that I see, stems from poor sentence structure. Students love a good run-on sentence, with a few fragments thrown in for good measure. It drive me crazy. “Use a comma or a period somewhere, please,” I beg.

Lucky for us at GCC, we’ve found an adaptive learning tool to help us teach students the grammar and mechanics skills, including sentence structure that they struggle with. If you’re not familiar with adaptive learning, it “is an educational method which uses computer algorithms to orchestrate the interaction with the learner and deliver customized resources and learning activities to address the unique needs of each learner” (Wikipedia). The tool we adopted from McGraw-Hill is called Connect, which includes LearnSmart Achieve. LSA provides an adaptive learning system designed to identify students’ areas of weakness. It uses supplementary content, such as videos, interactive activities, additional readings, and even a time management feature, all intended to guide students through content and resources at an appropriate pace. You can see an example below.

The beauty of this type of tool is students are being assessed all through out the process, and the system is adapting to their needs. If they’re struggling with the content they get more resources and more practice. If a student clearly understands, they hit mastery sooner and complete the lesson. So instead of a lot of pain and suffering, students get what they need. Missing a question doesn’t seem like a punishment. It becomes and opportunity to learn why and try again until they get it right. And as an instructor, I don’t have to grade any of that work. That’s the real beauty. My assessment comes when they put those skills to the test on an essay assignment.

Unfortunately, we can’t eliminate all the pain and suffering. At some point students have to write an essay, and instructors have to grade it. Well, more like grade 100+ of them (24 students x 5 classes). And we assign 3-4 essays in each course, so it’s still a lot of grading. But I digress. Once a student submits a finished essay, eager with anticipation of a passing grade, it takes some time to get that feedback back to students. During that span (1-2 weeks on occasion), students forget all about that paper and the effort or lack of effort they put into it. And when the paper is return, the process often ends there. There’s no motivation to do better. We teach that writing is a process, yet we make the process end when we’re ready. I believe with a C paper and especially an F paper, the process is not over yet. The student needs to continue to work on that essay, not the next one, in order to improve his/her writing.

So my assessment technique involves giving students an opportunity of a rewrite. Yep, more pain essays for me to grade. But it works because students have to tell me what it is they did to improve the essay. What skills did they work on? What help did you seek? Did you work in LearnSmart Achieve? Did you visit the Writing Center? Did you schedule a conference with your instructor? So the process doesn’t have to end with an F paper crumpled and thrown in the trashcan as the student walks out the door (clearly that’s an old reference to times gone by). Writing is a process and the only way to get students to write better is to keep the process going for as long as they need.

Example of McGraw-Hill LearnSmart Achieve

13
Mar

My First Black Teacher

Do any of you remember your first black teacher? I’m guessing many can say they never had one. I can say that I only had two from elementary school all the way through grad school. If I lived my whole life in Arizona, that might be understandable given the 4% African American population in this state. But I started my education growing up in an all black neighborhood in Columbus, OH. I mean everybody was black. Except for the teachers. I didn’t think anything of it. Teachers were just white.

Then when I started junior high school, my mom thought it would be a great idea to bus me to an all white school. Guess what? There weren’t any black teachers there either. Two busloads of black kids shipped off to white suburbia to fend for ourselves. Little did I know that we were part of desegregation busing, the practice of assigning and transporting kids to schools so as to overcome the effects of residential segregation on local school demographics. All I knew was it sucked. I never felt like that was my school. We were just visitors.

In the fall of 1947, Seattle Public Schools hired its first two black teachers.
Thelma DeWitty reads to her second-grade students at Cooper Elementary School in 1950. (Josef Scaylea / The Seattle Times)

We moved to Arizona the following year, and I remember feeling relieved. In Central Phoenix I wasn’t the only minority. There were Mexican and Native American kids too. Brown people unite. But Phoenix had its own version of desegregation busing even though it probably wasn’t planned that way. I lived right across the street from North HS, but some how I found myself riding the city bus everyday to Central. My mom was crazy sneaky like that. There might have been black teachers at North, but I didn’t see a one at Central. They were all white, so clearly they were the better teachers.

When you grow up never seeing anyone who looks like you in roles of leadership and prestige, you start to believe you can never achieve that yourself. Thank goodness I NEVER wanted to be a teacher, so it never really bothered me until I left for college. After spending two years at Phoenix College, I went to a Historically Black College (HBC) in Texas. Woot woot! Certainly, there will black teachers there. Nope. Well, there were a few, but not teaching the courses I was taking. Except for my Spanish teacher. She was my first black teacher. I remember myself acknowledging that fact one day in class and thinking: my first black teacher and I can’t understand a word she’s saying. Haha!

Inclusivity

There is a point to all this reminiscing about my schooling. It reminds me that there are many individual students who find themselves in similar situations as I did growing up or even feeling marginalized. Even today we have students who are minorities, LGBTQ, physically or mentally disabled who show up in our classrooms wondering if they fit in. Many are the first in their families to go to college, so there’s no precedence. Many will look around the room and see very few faces like their own and wonder if they can do it. So for me, I feel as if I have to do more than just be their first black teacher. I have to try to be more inclusive with these students. Not because they feel they need it, but because I feel like every student should feel as if they are a part of their community and develop a sense of belonging and hopefully become better prepared for life because of that.

5
Mar

Sabbatical Data Project – Part 1

Statistics Chart Analysis –
Pixabay License

Part of my sabbatical is to do a “mini” project at GCC as a proof of concept or example of how faculty can use data to answer questions about the courses they teach. “This part (of my sabbatical) will also involve working with GCC’s SPA (IE department) to create a data project that supports my department and other departments that might have an interest in using data.” My hope was to expand upon the ideas of a Learning Grant my department had last year: Analytics for English Faculty Learning Community. The goals of this project were to make reading, writing, and English humanities faculty members, who teach online and/or hybrid courses at Glendale Community College, more knowledgeable about the types of student data available to them and the ethically and pedagogically sound methods to use said data.

So for this mini project, I plan to expand upon the ideas behind this grant into this part of my sabbatical. One question that I’ve always had is, “Is there a way to predict how well students will do in an online or hybrid class before they even begin?” If we can predict which students might be at risk, we can then design targeted interventions to help those students. I’m not talking about standard best practices that we should be doing for all students. I’m talking about interventions that are more invasive that might be disruptive to the course if an instructor tried to do them with all students. An example of an intervention might be requiring students to meet with the instructor with in the first week to discuss goals for the course. This could prove helpful, but probably impossible for an instructor with multiple online and hybrid courses.

The data we would like to see are:

  • what previous classes have been attempted, including online and hybrid class history
  • how many drops and withdrawals,
  • past grades on prerequisite courses,
  • GPA,
  • placement test scores,
  • and demographic data.

I’ll post more on this “mini” project after we get the data. In the mean time I’ll be researching what interventions we might add to our suggested list to help support the students identified at risk and for colleges who have similar programs set up and what their success has been.

I’m also starting a new MOOC this week: Analytics in Course Design: Leveraging Canvas Data. The primary goal of this course is to explore Canvas data and visualization techniques that faculty and instructional designers can use to make informed decisions about Canvas course design. Finally, a course that makes sense to me. The course has four modules that each apply different aspects of Canvas data to course design. The modules cover Student Engagement, Course Design, Assignment Submissions, and Discussion Interactions.

27
Feb

Don’t Mind Me. I’m Just Breaking the Rules

I know you’re reading this, but technically this post does not exist. I love Write6x6, but since I’m on sabbatical this year, I can’t participate in any on campus activities. Hence why you are not really seeing this post.

But I could not resist posting about my inspirations for who I am today. No doubt it is those who came before me and had the responsibility to coach and/or supervise me. I was an athlete growing up; pretty much still am to this day, so I’ve had many coaches along the way. And when I started teaching, I realized that department chairs served in much the same capacity as a coach for teachers. My first teaching job was at Deer Valley HS way back in the day. My first chair’s advice to me was: “I’d rather you beg for forgiveness than ask for permission.”

Well, I took that advice and ran! I thought she was crazy, but if that is how she wanted to play it, I was game. The quote is attributed to Rear Admiral Grace Hopper. The idea is not that you abuse the situation and just do whatever the heck you want. It’s meant to encourage others to go for things if they truly believe in it. A lot of good ideas go by the wayside because it’s too complicated to figure out how to get permission. Hopper believed “If it’s a good idea, go ahead and do it. It is much easier to apologize than it is to get permission.” So it’s really about knowing when to push the boundaries.

In my 30 years of working in education, I’ve learned that there are a lot of naysayers, those who can’t think outside the box and just want to follow the status quo or their perceived rules. It’s a wonder we get anything done sometimes, but I think it’s those that push the boundaries and take risks, and often have to beg forgiveness, that help move things along and drive innovation. So that has pretty much been my motto and way of life for the last 30 years. Luckily I didn’t have to do a lot of begging.

So I’d say I was inspired by that first chair, and because I took her advice, I think it shaped who I am today as an educator. It opened up lots of opportunities I may have never gotten had I asked for permission first.

Cheers to Jeanne Sabrack who now teaches adjunct at Scottsdale Community College.

14
Jan

Sabbatical 2018-19: Time to Get Back to Work (Spring 2019) I’m Going to Harvard

I’m starting a new course that I was supposed to complete in the fall. It’s an edX course from Harvard: HarvardX: PH125.1x Data Science: R Basics.

In this course I hope to learn how to read, extract, and create datasets in R, how to perform a variety of operations and analyses on datasets using R, and how to write my own functions/sub-routines in R. I’m not sure what all that means yet, but I have a good idea.

“R is a language and environment for statistical computing and graphics. It’s an integrated suite of software facilities for data manipulation, calculation and graphical display” (R website).

The R language is widely used among statisticians and data miners for developing statistical software and data analysis, therefore, it’s on my list of skills to learn during my sabbatical. The goal is not to become an expert at R, but to get an idea of what is involved in using this tool for data analysis.

The first section of this course is an introduction to R Basics, functions and datatypes. So I’ll start with learning to appreciate the rationale for data analysis using R, define objects and perform basic arithmetic and logical operations, use pre-defined functions to perform operations on objects, and distinguish between various data types.

Basically I’m typing in a bunch of variables and formulas into the program to get answers. Example: What is the sum of the first 20 positive integers? I’m not sure why I’d want to know this, but I would: Type in n <- 20 to define the variable and then use the formula n*(n+1)/2 to get your answer.

Keeping my fingers crossed that my love  hatred for math doesn’t show through. However, I can see how someone who is good a math would be a natural fit for coding. Wish me luck. I’m going to need it.

29
Nov

Sabbatical 2018 Week 14: Starting the Capstone Project

I successfully completed the first five courses of the Big Data Specialization through Coursera, and I’ll have to say it was crazy. I never knew there was so much to learn about data analysis. My mind is still spinning. Now I’m expected to put it all together and actually do a project. Whew! Wish me luck. I’m going to need it.

The Capstone project is a 5-week project where I’ll be doing some data exploration, aggregation, and filtering using Splunk. Then in the following week, I will perform classification on the fictional game data using a decision tree in KNIME. Next, I will learn how to use Spark MLlib to do cluster analysis on the simulated game data. This is then followed by exploring a somewhat different dataset, simulated chat data, and performing some graph analytics using Neo4j in the 4th week. Then I will be gathering results together and preparing a presentation and report. I will complete the project by submitting my presentation and final report in the final week.

At this point, I am not confident I will be able to complete this, but I said that about my doctorate dissertation too, and I completed that. It’s amazing what you can accomplish if you just try. So try I will.

I will have to say, however, that prior to signing up for this specialization, they make it sound like anyone with no prior experience could learn how to be a data analyst by just completing this specialization. These people are high. You really need a background in coding to be a data analyst. Learning how to use all the many programs was a challenge and impossible to memorize the coding needed to run the programs. It was fun, however, copying and pasting the code and watching it do stuff.

The specialization did give me insight into all that goes into data analysis and trust me, there is a lot. The capstone course doesn’t officially begin until February, but I was able to enroll and get started. I’ll probably stop and take a break for the holiday and finish this in February.

4
Nov

Sabbatical 2018 Week 12: Canvas Data Portal

I was finally able to get access to Maricopa’s instance of Canvas Data Portal, so this week I’ll share a little about what it is and how we might use it. I connected with Randy Anderson at the district, our Canvas administrator, and he was very helpful in getting me and Lisa set up for our accounts and permissions. I guess he figured we couldn’t do too much damage. I’ll explain that in a bit.

Canvas Data is a service from Canvas that provides admins with optimized access to their data for reporting and queries. “Canvas Data Admins can download flat files or view files hosted in an Amazon Redshift data warehouse. The data will be an extracted and transformed version of a school’s Canvas activity and can be accessed using any open database connectivity (ODBC) analytics tool to generate custom data visualization and reports” (Canvas). I’ve been learning about some analytics tools in my Big Data Specialization courses. Unfortunately for me, none of the 30+ tools mentioned so far are ODBC analytics tools. They were mostly big data management systems (BDMS).

Example course data dashboard created in Tableau

Example course data dashboard created in Tableau

The most common ODBC analytics tools include Excel (using Amazon Redshift), Tableau, R, and SQL Workbench/J. I’m scheduled to learn both Tableau and R in the spring in either the Johns Hopkins Data Science Specialization on Coursera or the Data Visualization with Tableau Specialization on Coursera. I haven’t decided which specialization I’ll officially do, but I’ll be able to access both.

Apparently, the district office checked into the cost of hosting in an Amazon Redshift data warehouse, and it was cost prohibitive. This is the method that many other institutions choose, while others do in-house database management. Either way, this decision is beyond me, and I’ll just have to wait to see how it pans out in Maricopa if it does at all. In the meantime, I’m hoping to be able to play with smaller sets of data from Canvas Data portal using the tab delimited (.txt) flat files. “Canvas Data parses and aggregates the over 280 million rows of Canvas usage data generated daily and exports them” (Canvas). That’s a lot of data. And I’m guessing without a specialized database or warehouse, we’ll have trouble utilizing these files.

The portal includes a Canvas Data schema which includes documentation that explains all the table data that is exported from Canvas. We could use this data to answer a multitude of questions about our students, instructors, and the courses in Canvas. For instance, Canvas suggests we could answer questions like, “What makes a successful department/course/instructor?” “How can our institution improve student retention?” and even “How are students doing in the course (current and historical)?” There’s much information to be gained from the data.

I get a little overwhelmed just thinking about all there is left to learn. The Canvas Data FAQ is a good place to start. From there I’ve already learned how to open the flat files and how to add headers to the columns. I’ve also bookmarked the R FAQ and a page for 7-Zip, a free file archiver with a high compression ratio. It’s the tool needed to open the Canvas Data .gz files. In the spring I’ll also get to visit a couple of colleges who already have all this setup and running. I good example of what would be really cool is the Unizin Data Warehouse at Indiana University. It gives faculty direct access to Canvas data for their courses. I would love to have that set up in Maricopa. Someday maybe.

 

31
Oct

Sabbatical 2018 Week 10: What Happened to Weeks 7-9?

Boy, time sure flies when you’re busy. It’s already week 10. I had to go back to August to count the weeks because I barely know what day it is, let alone how many weeks have passed in the semester. This of course is all good. While on sabbatical, I’ve also been renovating a vacation home we purchased up in Happy Jack, so my life has been consumed with data and renovations for the last three months. Thankfully one of those projects is almost complete. And that would not be the data project. On we roll.

Big Data is still my world at the moment. I’m currently in course 5 of the Big Data Specialization on Coursera. Course 5 is Graph Analytics for Big Data. I’m learning about how real world data science problems can be modeled as graphs along with various tools and techniques. The biggest thing I’ve learned so far is that most people don’t know what graphs are. Most people think graphs are these pretty pie charts.

These are not graphs apparently. These are pie charts. I knew that. I love pie charts. We are not learning how to make pie charts in the Graph Analytics for Big Data course. We’re learning how to make this below. This is a graph with nodes and edges.

I should have know this was not going to be simple. This graph theory is tied to math, so they are “mathematical structures used to model pairwise relations between objects.” “Graphs can be used to model many types of relations and processes in physical, biological, social and information systems” (Wikipedia).

A good example of how graphs can be used is with fraud detection. Graph databases are uniquely positioned to spot the connections between large data sets and identify patterns, a useful trait when it comes to spotting complex, modern fraud techniques. A better example is the product recommendations you get on Amazon and other online retail sites. Amazon can pull together product, customer, inventory, supplier and social sentiment data into a graph database to spot patterns and make smarter recommendations to you.

I’m still wrapping my head around how graphs can be useful in education. For an assignment I designed a graph around a peer review assignment for students. It’s pretty basic, but in my mind this might be useful data to find patterns to help students improve their work.

Later in this course we will be learning how to use Neo4j, a graph database management system and GraphX, Apache Spark’s API for graphs and graph-parallel computation. So I imagine my graphs in another week will be much better.

Next post I’ll share some information about Canvas Data Portal, as I now have access to Maricopa’s instance. It’s so exciting even though I don’t really know how to “look” at the data yet, but I can see all the flat files. I just need a database to magically appear with a data scientist attached to help. 🙂

26
Sep

Sabbatical 2018 Week 6: The Big Data Landscape is Ridiculously Huge

Last week I completed course two in the Big Data Specialization: Big Data Modeling and Management Systems. This was another very technical course. We gained an in-depth knowledge of why big data modeling and management is essential in preparing to gain insights from your data. We gained knowledge of real world big data modeling and management use cases in areas such as energy and gaming. We also learned to understand different kinds of data models, the ability to describe streaming data and the different challenges it presents, and the differences between a DBMS and a BDMS.

We did a lot of playing in the Cloudera VM again. I type in the codes given and things magically happen. It’s kind of cool, but no way I’m going to remember how to replicate any of this. For example, we learned how to import and query text documents with Lucene and perform weighted queries to see how rankings change. We learned how to perform statistical operations and layout algorithms on graph data in Gephi. I believe we actually installed and ran that program on our computers instead of in Cloudera. Then back in Cloudera we learned how to view semi-structured data streaming in real-time from a weather station and create plots of streaming weather station data.

If your head is spinning from just the few programs I mentioned already, it’s going to explode when you hear we also were introduced to Redis, Aerospike, AsterixDB, Solr, and Vertica. I thought I might pass out. The Big Data landscape is ridiculously huge. How anyone knows all of these programs is beyond me.

Also this week I reached out to district IT to schedule a meeting with the Canvas administrators to discuss Canvas Data Portal. It sounds like they have already started doing some exploring on their own. In fact, I was told to contact another individual who had already done some initial investigation in the use of Amazon Redshift. And a few developers have already explored it as part of a Transformation data project. It also looks like I’ll be able to get access to our Data Portal soon as well so I can start exploring. This is great news, as I thought this one step would be the one thing to derail my sabbatical proposal. Things are moving forward. I’m a little behind on my reading and annotated bib, but besides that I’m right on track. Yay, me!